Return to search

Exploring Inorganic Catalysis with Electronic Structure Simulations

Organometallic catalysis has attracted significant interest from both industry and academia due to its wide applications in organic synthetic transformations. Example of such transformations include the reaction of a zinc carbenoid with olefins to form cyclopropanes. The first project is a computational study using both density functional and correlated wavefunction methods of the reaction between ethylene and model zinc carbenoid, nitrenoid and oxenoid complexes (L-Zn-E-X, E = CH2, NH or O, L = X = I or Cl). It was shown that cyclopropanation of ethylene with IZnCH2I and aziridination of ethylene with IZnNHI proceed via a single-step mechanism with an asynchronous transition state. The reaction barrier for the aziridination with IZnNHI is lower than that of cyclopropanation. Changing the leaving group of IZnNHI from I to Cl, changes the mechanism of the aziridination reaction to a two-step pathway. The calculation results from the epoxidation with IZnOI and ClZnOCl oxenoids suggest a two-step mechanism for both oxenoids. Another important example of organometallic catalysis is the formation of alkyl arenes from arenes and olefins using transition metal catalysis (olefin hydroarylation). We studied with DFT methods the mechanism of a novel Rh catalyst (FlDAB)Rh(TFA)(η2–C2H4) [FlDAB = N,N’ -bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] that converts benzene, ethylene and air-recyclable Cu(II) oxidants to styrene. Possible mechanisms are discussed.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc849685
Date05 1900
CreatorsKhani, Sarah Karbalaei
ContributorsCundari, Thomas R., Schwartz, Martin, Omary, Mohammad A.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 48 pages : illustrations, Text
RightsPublic, Khani, Sarah Karbalaei, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0139 seconds