Return to search

Endothelium-derived hyperpolarizing factor-mediated relaxation in coronary and pulmonary microcirculation: implications in cardiothoracic surgery.

Zou Wei. / Thesis submitted in: December 2001. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 98-119). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgements --- p.ii / Publication lists --- p.iii / Abstract --- p.ix / Abbreviations --- p.xiii / List of tables and figures --- p.xiv / Chapter Chapter 1: --- General Introduction --- p.1 / Chapter 1.1. --- Endothelium-dependent relaxation in coronary and pulmonary circulation --- p.1 / Chapter 1.1.1. --- Endothelium-derived relaxing factors --- p.2 / Chapter 1.1.1.1. --- Nitric Oxide --- p.3 / Chapter 1.1.1.2. --- PGI2 --- p.5 / Chapter 1.1.1.3. --- EDHF --- p.6 / Chapter 1.1.2. --- EDHF in coronary and pulmonary circulation --- p.8 / Chapter 1.1.2.1. --- EDHF in coronary circulation --- p.8 / Chapter 1.1.2.2. --- EDHF in pulmonary circulation --- p.9 / Chapter 1.2. --- Effect of hyperkalemia on EDHF-mediated relaxation --- p.10 / Chapter 1.3. --- Organ Preservation Solutions --- p.13 / Chapter 1.3.1. --- Euro-Collins solution --- p.14 / Chapter 1.3.2. --- University of Wisconsin solution --- p.15 / Chapter Chapter 2: --- Objectives and research approaches --- p.16 / Chapter 2.1. --- Objectives --- p.16 / Chapter 2.1.1. --- "Endothelium-dependent relaxation resistant to INDO, L-NNA, and HbO in porcine and pulmonary coronary micro-arteries" --- p.16 / Chapter 2.1.2. --- "EET11,12 and EDHF-mediated function in porcine coronary micro-arteries" --- p.17 / Chapter 2.1.3. --- "Comparison of EC or UW solution on endothelium-dependent relaxation resistant to INDO, l-NNA, and HbO in porcine pulmonary arteries" --- p.17 / Chapter 2.2. --- Research approaches --- p.18 / Chapter 2.2.1. --- "Endothelium-dependence of the relaxation by BK or EET11,12" --- p.18 / Chapter 2.2.2. --- Effect of hypothermic storage with EC and UW solution on EDHF-related relaxation --- p.18 / Chapter 2.2.3. --- Time-dependent alteration of endothelium-dependent relaxation in pulmonary micro-arteries by EC and UW solution --- p.19 / Chapter 2.2.4. --- Effect of HbO in endothelium-dependent relaxation --- p.19 / Chapter Chapter 3: --- Material and Methods --- p.21 / Chapter 3.1. --- General Methods --- p.21 / Chapter 3.1.1. --- Porcine heart and lung collection and transportion / Chapter 3.1.2. --- Myograph --- p.21 / Chapter 3.1.3. --- Myosight --- p.24 / Chapter 3.1.4. --- Anatomizing blood vessel --- p.24 / Chapter 3.1.5. --- Mounting --- p.24 / Chapter 3.1.6 --- Normalization --- p.26 / Chapter 3.1.6.1. --- Normalization of coronary micro-artery --- p.27 / Chapter 3.1.6.2. --- Normalization of pulmonary micro-artery --- p.28 / Chapter 3.1.7. --- Precontraction --- p.30 / Chapter 3.1.8. --- Endothelium-dependent relaxation --- p.31 / Chapter 3.2. --- Coronary artery studies --- p.32 / Chapter 3.2.1. --- Porcine heart harvest and anatomy --- p.32 / Chapter 3.2.2. --- Characteristic of histology of porcine coronary micro-artery --- p.32 / Chapter 3.3. --- Pulmonary artery studies --- p.35 / Chapter 3.3.1. --- Porcine lung harvest and anatomy --- p.35 / Chapter 3.3.2. --- Characteristic of histology of porcine pulmonary micro- artery --- p.36 / Chapter 3.4. --- Drugs --- p.41 / Chapter 3.4.1. --- Drugs --- p.41 / Chapter 3.4.2. --- Preparation of oxyhemoglobin solution --- p.41 / Chapter 3.5. --- Statistical Analysis --- p.42 / Chapter 3.5.1. --- Calculation of EC50 --- p.42 / Chapter 3.5.2. --- Statistical analysis --- p.42 / Chapter Chapter 4: --- "Epoxyeicosatrienoic Acids (EET11,12) May Partially Restore EDHF-Mediated Function in Coronary Micro-Arteries" --- p.43 / Chapter 4.1. --- Abstract --- p.43 / Chapter 4.2. --- Introduction --- p.44 / Chapter 4.3. --- Experimental Protocol --- p.45 / Chapter 4.3.1. --- Precontraction --- p.45 / Chapter 4.3.2. --- "EDHF-mediated (INDO, L-NNA, and HbO-resistant) relaxation" --- p.45 / Chapter 4.3.3. --- "EET11,12-mediated relaxation after exposure to hyperkalemia" --- p.46 / Chapter 4.3.4. --- "The effect of incubation with EET11,12 on the BK-induced, EDHF-mediated relaxation" --- p.46 / Chapter 4.4. --- Results --- p.47 / Chapter 4.4.1. --- Resting force --- p.47 / Chapter 4.4.2. --- HbO and U46619-induced contraction force --- p.48 / Chapter 4.4.3. --- "EET11,12-induced relaxation in coronary micro-arteries after exposure to hyperkalemia" --- p.49 / Chapter 4.4.4. --- "The EDHF-mediated relaxation to BK resistant to INDO, l- NNA,and HbO" --- p.51 / Chapter 4.4.4.1. --- Incubated in either hyperkalemic solution (K+ 20mmol/L) or Krebs' solution (control) --- p.51 / Chapter 4.4.4.2. --- "Incubated in either hyperkalemic solution (K+ 20mmol/L) plus EET11,12 or Krebs' solution (control)" --- p.53 / Chapter 4.5. --- Discussion --- p.57 / Chapter 4.5.1. --- EDHF plays an important role in the coronary micro-arteries --- p.57 / Chapter 4.5.2. --- "EDHF-mediated (INDO, l-NNA, and HbO-resistant) relaxation in the coronary micro-arteries" --- p.58 / Chapter 4.5.3. --- "EET11,12 may partially mimic the EDHF-mediated relaxation in the porcine coronary micro-artery" --- p.59 / Chapter 4.5.4. --- "Effect of EET11,12 added in hyperkalemia may partially restore the EDHF-mediated relaxation in the porcine coronary micro-arteries" --- p.59 / Chapter Chapter 5: --- Impaired EDHF-Mediated Relaxationin Porcine Pulmonary Micro-arteries by Cold Store with Euro-Collin's and University of Wisconsin Solution --- p.61 / Chapter 5.1. --- Abstract --- p.61 / Chapter 5.2. --- Introduction --- p.62 / Chapter 5.3. --- Experimental Protocol --- p.64 / Chapter 5.3.1. --- Precontraction --- p.64 / Chapter 5.3.2. --- "Role of EDHF-mediated (INDO, L-NNA and HbO-resistant) relaxation in porcine pulmonary micro-arteries by BK orA23187" --- p.64 / Chapter 5.3.3. --- Effect of hyperkalemia or preservation solutions (EC or UW) on the EDHF-mediated relaxation by BK or A23187 --- p.65 / Chapter 5.3.3.1. --- The effect of hyperkalemia --- p.65 / Chapter 5.3.3.2. --- Effect of EC solution on the EDHF-mediated relaxation --- p.65 / Chapter 5.3.3.3. --- Effect of UW solution on the EDHF-mediated relaxation --- p.66 / Chapter 5.3.3.4. --- The effect of UW and EC solutions on the contractility of the pulmonary micro-artery --- p.66 / Chapter 5.4. --- Results --- p.66 / Chapter 5.4.1. --- Resting force --- p.66 / Chapter 5.4.2. --- U46619-induced contraction force --- p.67 / Chapter 5.4.3. --- Role of EDHF-mediated relaxation induced by BK or A23187 --- p.67 / Chapter 5.4.4. --- The effect of hyperkalemia --- p.71 / Chapter 5.4.5. --- Effect of EC solution on the EDHF-mediated relaxation --- p.72 / Chapter 5.4.6. --- Effect of UW solution on the EDHF-mediated relaxation --- p.73 / Chapter 5.4.7. --- The effect of UW and EC solution on the contractility of the pulmonary micro-artery --- p.73 / Chapter 5.5. --- Discussion --- p.77 / Chapter 5.5.1. --- EDHF-mediated endothelial function exists in the pulmonary micro-circulation --- p.77 / Chapter 5.5.2. --- Hyperkalemia exposure reduces EDHF-related relaxation and possible mechanism --- p.78 / Chapter 5.5.3. --- The effect of EC and UW solutions on the EDHF-media relaxation in the pulmonary micro-arteries --- p.79 / Chapter Chapter 6: --- General Discussion --- p.82 / Chapter 6.1. --- Endothelium-dependent vasodilators: BK and A23187 --- p.82 / Chapter 6.2. --- EDHF in porcine coronary and pulmonary micro-arteries --- p.84 / Chapter 6.2.1. --- EDHF in porcine coronary micro-arteries --- p.84 / Chapter 6.2.2. --- EDHF in porcine pulmonary micro-arteries --- p.87 / Chapter 6.2.3. --- Vascular stretch and release of endothelium-derived vasodilators --- p.87 / Chapter 6.2.4. --- "EET11,12" --- p.88 / Chapter 6.3. --- "Endothelium-dependent relaxation resistant to INDO, L- NNA, and HbO in porcine coronary and pulmonary microcirculation" --- p.89 / Chapter 6.4. --- "Alteration of endothelium-dependent relaxation resistant to INDO, l-NNA, and HbO after exposure to hyperkalemia" --- p.90 / Chapter 6.5. --- "Alteration of endothelium-dependent contraction resistant to INDO, L-NNA, and HbO after exposure to EC or UW solutions" --- p.91 / Chapter 6.6. --- Clinical implications --- p.92 / Chapter 6.7. --- Limitations --- p.93 / Chapter 6.7.1. --- Common limitations --- p.93 / Chapter 6.7.2. --- Limitation of in vitro study --- p.93 / Chapter 6.8. --- Future work --- p.94 / Chapter Chapter 7: --- Conclusion --- p.96 / References --- p.98 / Appendies / "Wei Zou, Qin Yang, Anthony PC Yim, & Guo-Wei He Epoxyeicosatrienoic acids (EET11,12) may partially restore endothelium- derived hyperpolarizing factor-mediated function in coronary micro- arteries. Annals of Thoracic Surgery. 2001; 72(12): 1970~1976."

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323983
Date January 2002
ContributorsZou, Wei., Chinese University of Hong Kong Graduate School. Division of Surgery.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xx, 119, [7] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds