Return to search

Application of Noise Invalidation Denoising in MRI

Magnetic Resonance Imaging (MRI) is a common medical imaging tool that have beenused in clinical industry for diagnostic and research purposes. These images are subjectto noises while capturing the data that can eect the image quality and diagnostics.Therefore, improving the quality of the generated images from both resolution andsignal to noise ratio (SNR) perspective is critical. Wavelet based denoising technique isone of the common tools to remove the noise in the MRI images. The noise is eliminatedfrom the detailed coecients of the signal in the wavelet domain. This can be done byapplying thresholding methods. The main task here is to nd an optimal threshold andkeep all the coecients larger than this threshold as the noiseless ones. Noise InvalidationDenoising technique is a method in which the optimal threshold is found by comparingthe noisy signal to a noise signature (function of noise statistics). The original NIDeapproach is developed for one dimensional signals with additive Gaussian noise. In thiswork, the existing NIDe approach has been generalized for applications in MRI imageswith dierent noise distribution. The developed algorithm was tested on simulated datafrom the Brainweb database and compared with the well-known Non Local Mean lteringmethod for MRI. The results indicated better detailed structural preserving forthe NIDe approach on the magnitude data while the signal to noise ratio is compatible.The algorithm shows an important advantageous which is less computational complexitythan the NLM method. On the other hand, the Unbiased NLM technique is combinedwith the proposed technique, it can yield the same structural similarity while the signalto noise ratio is improved.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-85215
Date January 2012
CreatorsElahi, Pegah
PublisherLinköpings universitet, Medicinsk informatik, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0153 seconds