For the fractional-N frequency synthesizers using delta-sigma modulation (DSM) techniques, higher PLL bandwidth is highly desirable in order to achieve faster settling time. As the PLL bandwidth is increased, more quantization noises pass through the PLL so that the output phase noise performance is degraded. There is a tradeoff between phase-noise performance and PLL bandwidth. To improve the problem, the thesis studies the quantization noise cancellation technique. With this technique, the PLL bandwidth can be increased without the cost of degrading phase-noise performance. With the help of Agilent EEsof¡¦s ADS, the phase-noise performance of the studied fractional-N frequency synthesizers can be predicted. For demonstration, this research implements a 2.6 GHz fractional-N frequency synthesizer hybrid module, and compares the measured phase noises with and without the technique under considering various combinations of MASH DSM orders and PLL bandwidth. Another demonstration of this thesis is to design a PLL IC using TSMC 0.18 £gm CMOS process, and make a discussion on the testing performance of the PLL IC.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0816107-214633 |
Date | 16 August 2007 |
Creators | Li, Shiang-wei |
Contributors | Tzong-Lin Wu, Tzyy-Sheng Horng, Sheng-Fuh Chang, Huey-Ru Chuang, Kang-Chun Peng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0816107-214633 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0018 seconds