Ha Minh Lam et M. Morales ont introduit une classe d'idéaux binomiaux qui est une extension binomiale d'idéaux monomiaux libres de carrés.Étant donné I un idéal monomial quadratique de k[x] libre de carrés et J une somme d'idéaux de scroll de k[z] qui satisfont certaines conditions, nous définissons l'extension binomiale de I comme B=I+J. Le sujet de cette thèse est d'étudier le nombre p plus grand tel que les sizygies de B son linéaires jusqu'au pas p-1. Sous certaines conditions d'ordre imposées sur les facettes du complexe de Stanley-Reisner de I nous obtiendrons un ordre > pour les variables de l'anneau de polynomes k[z]. Ensuite nous prouvons pour un calcul des bases de Gröbner que l'idéal initial in(B), sous l'ordre lexicographique induit par l'ordre de variables >, est quadratique libre de carrés. Nous montrerons que B est régulier si et seulement si I est 2-régulier. Dans le cas géneral, lorsque I n'est pas 2-régulier nous trouverons une borne pour l'entier q maximal qui satisfait que les premier q-1 sizygies de B son linéaires. En outre, en supossant que J est un idéal torique et en imposant des conditions supplémentaires, nous trouveron une borne supérieure pour l'entier q maximal qui satisfait que les premier q-1 sizygies de B son linéaires. En imposant des conditions supplémentaires, nous prouverons que les deux bornes sont égaux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00772901 |
Date | 10 October 2012 |
Creators | De alba casillas, Hernan |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds