Return to search

Personalized Medicine: Development of a Predictive Computational Model for Personalized Therapeutic Interventions

Lung cancer is the leading cause of cancer-related deaths among men and women. Non-Small Cell Lung Cancer (NSCLC) constitutes the most common type of lung cancer and is frequently diagnosed at advanced stages. In the past decade, discovery of Epidermal Growth Factor Receptor (EGFR) mutations have heralded a new paradigm of personalized treatment for NSCLC. Clinical studies have shown that molecular targeted therapies increase survival and improve quality of life in patients. Despite these advances, the realization of personalized therapies for NSCLC faces a number of challenges including the integration of clinical and genetic data and a lack of clinical decision support tools to assist physicians with patient selection. This thesis demonstrates the development of a predictive computational model for personalized therapeutic interventions in advanced NSCLC. The findings suggest that the combination of clinical and genetic data significantly improves the model’s predictive performance for tumor response than clinical data alone.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/35383
Date02 August 2013
CreatorsKureshi, Nelofar
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.002 seconds