R??sum?? : L???Arctique est particuli??rement sensible aux changements climatiques et a r??cemment subi des modifications majeures incluant une diminution dramatique de l???extension de la glace de mer. Notre capacit???? a?? mod??liser et a?? potentiellement r??duire les changements climatiques est limit??e, en partie, par les incertitudes associe??es au forc??age radiatif induit par les effets directs et indirects des ae??rosols, qui de??pendent de notre compre??hension des processus impliquant les nuages et les ae??rosols. La charge des ae??rosols est caracte??rise??e par l???e??paisseur optique des ae??rosols (AOD) qui est le parame??tre radiatif extensif le plus important et l???indicateur re??gional du comportement des ae??rosols sans doute le plus de??cisif. Une de nos lacunes majeures dans la compre??hension des ae??rosols arctiques est leur comportement durant l???hiver polaire. Cela est principalement du?? au manque de mesures nocturnes d???AOD. Dans ce travail, on utilise des instruments (lidar et photome??tre stellaire) installe??s en Arctique pour mesurer, respectivement, les profils verticaux des ae??rosols et une valeur inte??gre??e dans la colonne (AOD) de ces profils. En outre, les donne??es d???un lidar spatial (CALIOP) sont utilise??es pour fournir un contexte pan-arctique et des statistiques saisonnie??res pour supporter les mesures au sol. Ces dernie??res ont e??te?? obtenues aux stations arctiques d???Eureka (80??? N, 86??? W) et de Ny A??lesund (79??? N, 12??? E) durant les hivers polaires de 2010-2011 et 2011-2012. L???importance physique des pe- tites variations d???amplitude de l???AOD est typique de l???hiver polaire en Arctique, mais suppose une ve??rification pour s???assurer que des artefacts ne contribuent pas a?? ces variations (par exemple un masque de nuage insuffisant). Une analyse des processus base??e sur des e??ve??nements (avec une re??solution temporelle ??? une minute) est essentielle pour s???assurer que les parame??tres optiques et microphysiques extensifs (grossiers) et intensifs (par particules) sont cohe??rents et physiquement conformes. La synergie photom??tre stellaire-lidar nous permet de caracte??riser plusieurs e??ve??nements distincts au cours des pe??riodes de mesures, en particulier : des ae??rosols, des cristaux de glace, des nuages fins et des nuages polaires stratosphe??riques (PSC). Dans l???ensemble, les modes fin (<1??m) et grossier (>1??m) de l???AOD obtenus par photome??trie stellaire (??[indice inf??rieur f] et ??[indice inf??rieur c]) sont cohe??rents avec leurs analogues produits a?? partir des profils inte??gre??s du lidar. Cependant certaines inconsistances cause??es par des facteurs instrumentaux et environnementaux ont aussi e??te?? trouve??es. La division de l???AOD du photome??tre stellaire ??[indice inf??rieur f] et ??[indice inf??rieur c] a e??te?? davantage exploite??e afin d???e??liminer les e??paisseurs optiques du mode grossier (le filtrage spectral de nuages) et, par la suite, de comparer ??[indice inf??rieur]f avec les AODs obtenues par le filtrage de nuages traditionnel (temporel). Alors que les filtrages temporel et spectral des nuages des cas e??tudie??s au niveau des processus ont conduit a?? des re??sultats bons a?? mode??re??s en termes de cohe??rence entre les donne??es filtre??es spectralement et temporellement (les e??paisseurs optiques des photome??tres stellaires et lidars e??tant toutes deux filtre??es temporellement), les re??sultats saisonniers semblent e??tre encore contamine??s par les nuages. En imposant un accord en utilisant un second filtre, plus restrictif, avec un crite??re de ciel clair ("enveloppe minimale du nuage"), les valeurs saisonnie??res moyennes obtenues e??taient de 0.08 a?? Eureka et 0.04 a?? Ny A??lesund durant l???hiver 2010-2011. En 2011-2012, ces valeurs e??taient, respectivement, de 0.12 et 0.09. En revanche les valeurs d???e??paisseur optique de CALIOP (estime??es entre 0 et 8 km) ont le??ge??rement diminue?? de 2010-2011 a?? 2011-2012 (0.04 vs. 0.03). // Abstract : The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column integrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements. The latter were obtained at the Eureka (80 ??? N, 86 ??? W) and Ny ??lesund (79 ??? N, 12 ??? E) high Arctic stations during the Polar Winters of 2010-11 and 2011-12. The physical significance of the variation of the small-amplitude AODs that are typical of the Arctic Polar Winter, requires verification to ensure that artifactual contributions (such as incomplete cloud screening) do not contribute to these variations. A process-level event-based analysis (with a time resolution of ??? minutes), is essential to ensure that extracted extensive (bulk) and intensive (per particle) optical and microphysical indicators are coherent and physically consistent. Using the starphotometry-lidar synergy we characterized several distinct events throughout the measurement period: these included aerosol, ice crystal, thin cloud and polar stratospheric cloud (PSC) events. In general fine (<1 ??m ) and coarse (>1 ??m )modeAODs from starphotometry ( ??[subscript f] and ?? [subscript c] ) were coherent with their lidar analogues produced from integrated profiles : however several inconsistencies related to instrumental and environmental factors were also found. The division of starphotometer AODs into ??[subscript ]f and ?? [subscript c] components was further exploited to eliminate coarse mode cloud optical depths (spectral cloud screening) and subsequently compare ?? [subscript f] with cloud-screened AODs using a traditional (temporal based) approach. While temporal and spectral cloud screening case studies at process level resolutions yielded good to moderate results in terms of the coherence between spectrally and temporally cloud screened data (both temporally screened starphotometer and lidar optical depths), seasonal results apparently still contained cloud contaminated data. Forcing an agreement using a more restrictive, second-pass, clear sky criterion ("minimal cloud envelope") produced mean 2010-11 AOD seasonal values of 0.08 and 0.04 for Eureka and Ny ??lesund respectively. In 2011-12 these values were 0.12 and 0.09. Conversely, CALIOP AODs (0 to 8 km) for the high Arctic showed a slight decrease from 2010-2011 to 2011-2012 (0.04 vs 0.03).
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QSHERU.3/127 |
Date | January 2014 |
Creators | Baibakov, Konstantin |
Contributors | O'Neill, Norman T., Schrems, Otto, Herber, Andreas |
Publisher | Universit?? de Sherbrooke |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Th??se |
Rights | http://creativecommons.org/licenses/by-nc-nd/2.5/ca/, ?? Konstantin Baibakov, Attribution - Pas d???Utilisation Commerciale - Pas de Modification 2.5 Canada |
Page generated in 0.0029 seconds