GaN-based HFETs demonstrate ubiquitous high power and high frequency performance and attract tremendous research efforts. Even though significant advances have been achieved, there still exist some critical issues needed to be investigated and solved. In particular, high defect densities due to inhomogeneous growth and operation under high power conditions bring many unique problems which are not so critical in the conventional Si and GaAs materials systems. In order to reduce the defect density and heat dissipation of GaN-based HFETs, research work on the realization of GaN-based HFETs on bulk GaN substrate has been carried out and the key problems have been identified and solved. Hot phonon scattering is the bottleneck which limits the enhancement of electron velocity in the GaN 2DEG channel. It is found that the plasmon-phonon coupling is the mechanism for converting of hot phonons into high group velocity acoustic phonons. In order to push more electrons into the GaN 2DEG channel in the plasmon-phonon coupling regime and to further reduce the hot phonon lifetime, a novel AlGaN/GaN dual channel HFET structure has been proposed. The growth, fabrication and characterization of such a AlGaN/GaN dual channel HFET structure has been carried out. Conventionally GaN-based light emitting diodes and laser diodes are grown and fabricated using the c-plane III-nitride expitaxy layers. In c-plane III-nitride epi-layers, the polarization-induced electric field introduces spatial separation of electron and hole wave functions in quantum wells (QW)s used LEDs and laser diodes LDs and degrades quantum efficiency. As well, blueshift in the emission wavelength becomes inevitable with increasing injection current unless very thin QWs are employed. The use of nonpolar orientations, namely, m-plane or a-plane GaN, would solve this problem. So far, m-plane GaN has been obtained on LiAlO2 (100), m-plane SiC substrates, and m-plane bulk GaN, which all have limited availability and/or high cost. Silicon substrates are very attractive for the growth of GaN due to their high quality, good thermal conductivity, low cost, availability in large size, and ease with which they can be selectively removed before packaging for better light extraction and heat transfer when needed To realize the low cost and improve the internal quantum efficiency of GaN based light emitting diodes, the process for m-plane GaN growth on Si (112) substrates has been studied and optimized. The continuous m-plane GaN film is successfully grown on Si (112) substrates.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1402 |
Date | 25 July 2012 |
Creators | Wu, Mo |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0022 seconds