Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\\mathbb_$ e explicamos com detalhe o caso $\\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos. / In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24092014-134946 |
Date | 04 November 2013 |
Creators | Aza, Nelson Javier Buitrago |
Contributors | Teotonio Sobrinho, Paulo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds