Return to search

Subdivision Surface based One-Piece Representation

Subdivision surfaces are capable of modeling and representing complex shapes of arbi-trary topology. However, methods on how to build the control mesh of a complex surfaceare not studied much. Currently, most meshes of complicated objects come from trian-gulation and simplification of raster scanned data points, like the Stanford 3D ScanningRepository. This approach is costly and leads to very dense meshes.Subdivision surface based one-piece representation means to represent the final objectin a design process with only one subdivision surface, no matter how complicated theobject's topology or shape. Hence the number of parts in the final representation isalways one.In this dissertation we present necessary mathematical theories and geometric algo-rithms to support subdivision surface based one-piece representation. First, an explicitparametrization method is presented for exact evaluation of Catmull-Clark subdivisionsurfaces. Based on it, two approaches are proposed for constructing the one-piece rep-resentation of a given object with arbitrary topology. One approach is to construct theone-piece representation by using the interpolation technique. Interpolation is a naturalway to build models, but the fairness of the interpolating surface is a big concern inprevious methods. With similarity based interpolation technique, we can obtain bet-ter modeling results with less undesired artifacts and undulations. Another approachis through performing Boolean operations. Up to this point, accurate Boolean oper-ations over subdivision surfaces are not approached yet in the literature. We presenta robust and error controllable Boolean operation method which results in a one-piecerepresentation. Because one-piece representations resulting from the above two methodsare usually dense, error controllable simplification of one-piece representations is needed.Two methods are presented for this purpose: adaptive tessellation and multiresolutionanalysis. Both methods can significantly reduce the complexity of a one-piece represen-tation and while having accurate error estimation.A system that performs subdivision surface based one-piece representation was im-plemented and a lot of examples have been tested. All the examples show that our ap-proaches can obtain very good subdivision based one-piece representation results. Eventhough our methods are based on Catmull-Clark subdivision scheme, we believe they canbe adapted to other subdivision schemes as well with small modifications.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1333
Date01 January 2006
CreatorsLai, Shuhua
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0106 seconds