Barbituric acids have been historically classified as compounds that act on the central nervous system, and as such provide therapeutic uses as anxiolytics, sedatives, hypnotics, and anticonvulsants. Recent investigations of barbituric acid derivatives have provided scientists with information that barbituric acids may have applications in antibacterial, anti-chlamydial, anti-viral, as well as anti-cancer treatments. Additionally, recent literature accounts have indicated that barbituric acid derivatives may also act as immune modulators. The recent explorations of barbiturates and their potential anti-cancer and immune modulating properties are the subject of this work. Novel synthetic approaches to the development of new barbituric acid derivatives were explored thoroughly, and the mechanisms of these novel syntheses were detailed by experiment and spectroscopic characterizations. In many cases the reaction procedures were designed for large scale, efficient syntheses, that are directly applicable to pharmaceutical production of these potentially valuable therapeutic compounds. Several new products unique to barbituric acid reactions were characterized spectroscopically. Barbituric acid derivatives were the subject of biological evaluation, and the results are reported in this work. Overall, unique synthetic approaches to the production of novel barbituric acid derivatives were accomplished to create several new classes of barbiturates with potential applications in cancer treatment.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2021 |
Date | 21 May 2004 |
Creators | Neumann, Donna |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0099 seconds