Return to search

Modelling the Neural Representation of Interaural Level Differences for Linked and Unlinked Bilateral Hearing Aids

Sound localization is a vital aspect of hearing for safe navigation of everyday environments. It is also an important factor in speech intelligibility. This ability is facilitated by the interaural level difference (ILD) cue, which arises from binaural hearing: a sound will be more intense at the nearer ear than the farther. In a hearing-impaired listener, this binaural cue may not be available for use and localization may be diminished.
While conventional, bilateral, wide dynamic range compression (WDRC) hearing aids distort the interaural level difference by independently altering sound intensities in each ear, wirelessly-linked devices have been suggested to benefit this task by matching amplification in order to preserve ILD. However, this technology has been shown to have varying degrees of success in aiding speech intelligibility and sound localization.
As hearing impairment has wide-ranging adverse impacts to physical and mental health, social activity, and cognition, the task of localization improvement must be urgently addressed. Toward this end, neural modelling techniques are used to determine neural representations of ILD cues for linked and unlinked bilateral WDRC hearing aids.
Findings suggest that wirelessly-linked WDRC is preferable over unlinked hearing aids or unaided, hearing-impaired listening, although parameters for optimal benefit are dependent on sound level, frequency content, and preceding sounds. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16032
Date11 1900
CreatorsCheung, Stephanie
ContributorsBruce, Ian C., Electrical and Computer Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds