Return to search

Etudes théorique et numérique de quelques problèmes d'écoulements et de chaleur hyperbolique / Theorical and numerical studies of non isothermal non stationary fluid flows within hyperbolic Cattaneo's heat law

Ce travail de thèse a pour but d'étudier des écoulements non stationnaires de fluides incompressibles Newtoniens et non isothermes. Le problème est décrit par les lois de conservation de la masse, de la quantité de mouvement et de l'énergie. Nous nous intéressons au couplage entre le système de Navier-Stokes et l’équation de la chaleur hyperbolique (le résultat de la combinaison entre la loi de conservation d'énergie et la loi de Cattaneo). Cette dernière est une modification de la loi de Fourier utilisée habituellement, elle permet de surmonter « le paradoxe de la chaleur » et d'obtenir une description plus précise de la propagation de la chaleur. Le système couplé est un problème hyperbolique-parabolique dont la viscosité dépend de la température, alors que la capacité thermique et le terme de dissipation dépendent de la vitesse. Afin d’obtenir un résultat d'existence de solutions du problème couplé, nous démontrons d'abord l'existence et l'unicité de la solution du problème hyperbolique puis nous introduisons une discrétisation en temps et nous étudions la convergence des solutions approchées vers celles du problème original. Dans un deuxième temps nous étudions l'existence et l'unicité de la solution du système de Navier-Stokes muni des conditions aux limites de type Tresca puis de type Coulomb en dimension 2 et 3. Dans le chapitre 3, nous proposons une discrétisation en temps du problème d'écoulement dans le cas de la condition au limite de type Tresca et nous établissons la convergence des solutions approchées. Le dernier chapitre de ce mémoire est consacré à l'étude du problème couplé dans le cas de conditions aux limites de type Tresca. L'existence d'une solution est obtenue par un argument théorique de point fixe en dimension 2 et également par une méthode de discrétisation en temps qui conduit à résoudre sur chaque sous intervalle de temps un problème découplé pour la vitesse et la pression d'une part et la température d'autre part / The main objective of this thesis is to study nonstationary flows of incompressible Newtonian and non isothermal fluids. The problem is described by the laws of conservation of mass, momentum and energy. We consider the coupling between the Navier-Stokes system and the hyperbolic heat equation (the result of combination between the law of conservation of energy and the Cattaneo’s law). This one is a modification of the commonly used Fourier's law, it overcomes "the heat paradox" and gives a more accurate description of heat propagation. The coupled system is an hyperbolic-parabolic problem where the viscosity depends on the temperature but the thermal capacity and the dissipative term depend on the velocity. To obtain an existence result for the coupled system, we first prove the existence and uniqueness of the solution of the hyperbolic problem then we introduce a time discretization and we study the convergence of the approximate solutions to those of the original problem. In the second chapter, we study the existence and uniqueness of the solution of Navier-Stokes system with Tresca or Coulomb boundary conditions in dimension 2 and 3. In the third chapter, we propose a time discretization of the flow problem in the case of Tresca boundary conditions and we establish the convergence of the approximate solutions. The last chapter is devoted to the study of the coupled problem in the case of Tresca free boundary conditions. The existence of a solution is obtained by a theoretical argument (fixed-point theorem) in dimension 2 and also by a method of time discretization leading, on each time subinterval, to a decoupled problem for the velocity and pressure of a hand and the temperature of the other hand

Identiferoai:union.ndltd.org:theses.fr/2012STET4024
Date10 December 2012
CreatorsBoussetouan, Imane
ContributorsSaint-Etienne, Boukrouche, Mahdi, Paoli, Laetitia
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds