In many clinical studies, continuous variables such as age, blood pressure and cholesterol are measured and analyzed. Often clinicians prefer to categorize these continuous variables into different groups, such as low and high risk groups. The goal of this work is to find the cutpoint of a continuous variable where the transition occurs from low to high risk group. Different methods have been published in literature to find such a cutpoint. We extended the methods of Contal and O’Quigley (1999) which was based on the log-rank test and the methods of Klein and Wu (2004) which was based on the Score test to find the cutpoint of a continuous covariate. Since the log-rank test is a nonparametric method and the Score test is a parametric method, we are interested to see if an extension of the parametric procedure performs better when the distribution of a population is known. We have developed a method that uses the parametric score residuals to find the cutpoint. The performance of the proposed method will be compared with the existing methods developed by Contal and O’Quigley and Klein and Wu by estimating the bias and mean square error of the estimated cutpoints for different scenarios in simulated data.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5478 |
Date | 01 January 2016 |
Creators | Joshi, Kabita |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.002 seconds