Cranes are increasingly used in transportation and construction. increasing demand and faster requirements necessitate better and more efficient controllers to guarantee fast turn-around time and to meet safety requirements. Container cranes are used extensively in ship-to-port and port-to-ship transfer operations.
In this work, we will extend the recently developed delayed position feedback controller to container cranes. In contrast with traditional work, which models a crane as a simple pendulum consisting of a hoisting cable and a lumped mass at its end, we have modeled the crane as a four-bar mechanism.
The actual configuration of the hoisting mechanism is significantly different from a simple pendulum. It consists typically of a set of four hoisting cables attached to four different points on the trolley and to four points on a spreader bar. The spreader bar is used to lift the containers. Therefore, the dynamics of hoisting assemblies of large container cranes are different from that of a simple pendulum. We found that a controller which treats the system as a four-bar mechanism has an improved response.
We developed a controller to meet the following requirements: traverse an 80-ton payload 50 m in 21.5 s, including raising the payload 15 m at the beginning and lowering the payload 15 m at the end of motion, while reducing the sway to 50 mm within 5.0 s at the end of the transfer maneuver. The performance of the controller has been demonstrated theoretically using numerical simulation. Moreover, the performance of the controller has been demonstrated experimentally using a 1/10th scale model. For the 1/10th scale model, the requirements translate into: traverse an 80 kg payload 5 m in 6.8 s, including raising 1.5 m at the beginning and lowering 1.5 m at the end of motion, while reducing the sway to 5 mm in under 1.6 s. The experiments validated the controller. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/9698 |
Date | 30 December 2002 |
Creators | Nayfeh, Nader Ali |
Contributors | Electrical and Computer Engineering, Stilwell, Daniel J., Baumann, William T., Masoud, Ziyad N. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | thesis.pdf |
Page generated in 0.0023 seconds