Return to search

Modelling of directional thermal radiation and angular correction on land surface temperature from space

The aim of this thesis is the modeling of surface directional thermal radiation and angular correction on the LST by using empirical and physical methods as well as the analysis of field validation. The work has conducted to some conclusions. The directional emissivity of natural surfaces was obtained from MODIS emissivity product and then used in the split-window algorithm for angular correction on LST. The parameterization models of directional emissivity and thermal radiation were developed. As for the non-isothermal pixels, the daytime-TISI method was proposed to retrieve directional emissivity and effective temperature from multi-angular middle and thermal infrared data. This was validated using an airborne dataset. The kernel-driven BRDF model was checked in the thermal infrared domain and its extension was used to make angular normalization on the LST. A new model, namely FovMod that concerns on the footprint of ground sensor, was developed to simulate directional brightness temperature of row crop canopy. Based on simulation result of the FovMod, an optimal footprintfor field validation of LST was obtained. This thesis has systematically investigated the topic of directional thermal radiation and angular correction on surface temperature and its findings will improve the retrieval accuracy of temperature and emissivity from remotely sensed data and will also provide suggestion for the future design of airborne or spaceborne multi-angular thermal infrared sensors and also for the ground measurement of surface parameters.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00967047
Date24 May 2013
CreatorsRen, Huazhong
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0025 seconds