La dysarthrie est un trouble de la parole affectant la réalisation motrice de la parole causée par des lésions du système nerveux central ou périphérique. Elle peut être liée à différentes pathologies : la maladie de Parkinson, la Sclérose Latérale Amyotrophique(SLA), un Accident Vasculaire Cérébral (AVC), etc. Plusieurs travaux de recherche ont porté sur la caractérisation des altérations liées à chaque pathologie afin de les regrouper dans des classes de dysarthrie. La classification la plus répandue est celle établie parF. L. Darley comportant 6 classes en 1969, (complétée par deux classes supplémentaires en 2005)Actuellement, l’évaluation perceptive (à l’oreille) reste le standard utilisé dans lapratique clinique pour le diagnostique et le suivi thérapeutique des patients. Cette approcheest néanmoins reconnue comme étant subjective, non reproductible et coûteuseen temps. Ces limites la rendent inadaptée à l’évaluation de larges corpus (dans le cadred’études phonétiques par exemple) ou pour le suivi longitudinal de l’évolution des patientsdysarthriques.Face à ces limites, les professionnels expriment constamment leur besoin de méthodesobjectives d’évaluation de la parole dysarthrique. Les outils de Traitement Automatiquede la Parole (TAP) ont été rapidement considérés comme des solutions potentiellespour répondre à cette demande.Le travail présenté dans ce rapport s’inscrit dans ce cadre et étudie l’apport quepeuvent avoir ces outils dans l’évaluation de la parole dysarthrique, et plus généralementpathologique.Dans ce travail, une approche pour la détection automatique des phonèmes anormauxdans la parole dysarthrique est proposée et son comportement est analysé surdifférents corpus comportant différentes pathologies, classes dysarthriques, niveaux desévérité de la maladie et styles de parole. Contrairement à la majorité des approchesproposées dans la littérature permettant des évaluations de la qualité globale de la parole(évaluation de la sévérité, intelligibilité, etc.), l’approche proposée se focalise surle niveau phonème dans le but d’atteindre une meilleure caractérisation de la dysarthrieet de permettre un feed-back plus précis et utile pour l’utilisateur (clinicien, phonéticien,patient). L’approche s’articule autours de deux phases essentielles : (1) unepremière phase d’alignement automatique de la parole au niveau phonème (2) uneclassification de ces phonèmes en deux classes : phonèmes normaux et anormaux. L’évaluation de l’annotation réalisée par le système par rapport à une évaluationperceptive d’un expert humain considérée comme ”référence“ montre des résultats trèsencourageants et confirme la capacité de l’approche à detecter les anomalies au niveauphonème. L’approche s’est aussi révélée capable de capter l’évolution de la sévéritéde la dysarthrie suggérant une potentielle application lors du suivi longitudinal despatients ou pour la prédiction automatique de la sévérité de leur dysarthrie.Aussi, l’analyse du comportement de l’outil d’alignement automatique de la paroleface à la parole dysarthrique a révélé des comportements dépendants des pathologieset des classes dysarthriques ainsi que des différences entre les catégories phonétiques.De plus, un effet important du style de parole (parole lue et spontanée) a été constatésur les comportements de l’outil d’alignement de la parole et de l’approche de détectionautomatique d’anomalies.Finalement, les résultats d’une campagne d’évaluation de l’approche de détectiond’anomalies par un jury d’experts sont présentés et discutés permettant une mise enavant des points forts et des limites du système. / Dysarthria is a speech disorder resulting from neurological impairments of the speechmotor control. It can be caused by different pathologies (Parkinson’s disease, AmyotrophicLateral Sclerosis - ALS, etc.) and affects different levels of speech production (respiratory,laryngeal and supra-laryngeal). The majority of research work dedicated tothe study of dysarthric speech relies on perceptual analyses. The most known study, byF. L. Darley in 1969, led to the organization and the classification of dysarthria within 6classes (completed with 2 additional classes in 2005).Nowadays, perceptual evaluation is still the most used method in clinical practicefor the diagnosis and the therapeutic monitoring of patients. However, this method isknown to be subjective, non reproductive and time-consuming. These limitations makeit inadequate for the evaluation of large corpora (in case of phonetic studies) or forthe follow-up of the progression of the condition of dysarthric patients. In order toovercome these limitations, professionals have been expressing their need of objectivemethods for the evaluation of disordered speech and automatic speech processing hasbeen early seen as a potential solution.The work presented in this document falls within this framework and studies thecontributions that these tools can have in the evaluation of dysarthric, and more generallypathological speech.In this work, an automatic approach for the detection of abnormal phones in dysarthricspeech is proposed and its behavior is analyzed on different speech corpora containingdifferent pathologies, dysarthric classes, dysarthria severity levels and speechstyles (read and spontaneous speech). Unlike the majority of the automatic methodsproposed in the literature that provide a global evaluation of the speech on generalitems such as dysarthria severity, intelligibility, etc., our proposed method focuses onthe phone level aiming to achieve a better characterization of dysarthria effects and toprovide a precise and useful feedback to the potential users (clinicians, phoneticians,patients). This method consists on two essential phases : (1) an automatic phone alignmentof the speech (2) an automatic classification of the resulting phones in two classes :normal and abnormal phones.When compared to an annotation of phone anomalies provided by a human expertconsidered to be the ”gold standard“, the approach showed encouraging results andproved to be able to detect anomalies on the phone level. The approach was also able to capture the evolution of the severity of the dysarthria suggesting a potential relevanceand use in the longitudinal follow-up of dysarthric patients or for the automatic predictionof their intelligibility or the severity of their dysarthria.Also, the automatic phone alignment precision was found to be dependent on the severity,the pathology, the class of the dysarthria and the phonetic category of each phone.Furthermore, the speech style was found to have an interesting effect on the behaviorsof both automatic phone alignment and anomaly detection.Finally, the results of an evaluation campaign conducted by a jury of experts on theannotations provided by the proposed approach are presented and discussed in orderto draw a panel of the strengths and limitations of the system.
Identifer | oai:union.ndltd.org:theses.fr/2017AVIG0218 |
Date | 17 February 2017 |
Creators | Laaridh, Imed |
Contributors | Avignon, Bonastre, Jean-François, Fredouille, Corinne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds