La physique des phénomènes de surface a progressé en même temps que les modèles décrivant des transitions de phase dans le volume. A deux dimensions, en particulier, les théories des champs invariantes sous les transformations conformes se sont révélées des outils extrêmement puissants pour décrire de manière non-perturbative les transitions de phase. L'étude des phénomènes de surface dans ce contexte a produit de nombreux résultats exacts tels que des exposants critiques et des fonctions de corrélations dans divers modèles critiques. Dans cette thèse nous nous intéressons à des théories statistiques à deux dimensions dont les degrés de liberté sont non locaux, comme par exemple des polymères en solution. Ces théories peuvent être formulées localement au prix de poids de Boltzmann négatifs ou complexes, elles sont alors non-unitaires. Nous nous intéressons aux effets de surface dans ces théories, et décrivons les différentes conditions au bord qui sont compatibles avec l'invariance conforme. Notre stratégie n'est pas de formuler une approche axiomatique, mais plutôt de partir de modèles concrets sur réseau, et d'étudier leur limite continue.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00555624 |
Date | 07 September 2010 |
Creators | Dubail, Jerome |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds