Return to search

Etude des régimes de combustion dans le contexte du fonctionnement dual fuel / Investigation of combustion regimes in a dual fuel engine

Le développement de stratégies de combustion innovantes est nécessaire aujourd’hui pour répondre aux réglementations de plus en plus intransigeantes qui fixent les seuils d’émissions polluantes par les véhicules neufs. Parmi ces stratégies, l’approche Dual Fuel a montré un fort potentiel dans la réduction des émissions tout en maintenant des niveaux de rendement élevés. Le concept Dual Fuel est fondé sur la formation d’un mélange homogène d’air et d’un carburant volatile (essence, méthane, éthanol...) allumé par une injection directe d’un carburant à fort cétane (de type gazole) dans la chambre de combustion. Une compréhension détaillée des différents processus de combustion est primordiale pour aider au développement des stratégies Dual Fuel concrètes. Dans ce contexte, le développement d’un modèle adapté, couplé à des mesures expérimentales réalisées sur moteur optique, est indispensable pour optimiser la combustion Dual Fuel. Une étude numérique, fondée sur le couplage d’un modèle de combustion turbulente dédié à la propagation de flamme dans des milieux stratifiés (ECFM3Z) et un modèle de chimie tabulée pour la prédiction de l’auto-inflammation (TKI), a été menée afin d’évaluer la capacité des modèles existants à prédire les différents régimes de combustion qui pourraient exister dans les stratégies Dual Fuel. Des critères de transition ont été ajoutés et évalués afin d’améliorer le couplage des deux modèles et d’assurer la transition entre l’auto-inflammation et la propagation de flamme. D’autre part, l’étude expérimentale sur un moteur à accès optiques a permis d’étudier des variations de richesse, de carburant de prémélange et de taux de dilution et de caractériser de manière fine les mécanismes de la combustion Dual Fuel afin de servir de base de données aux développements de modèles CFD. / Advanced combustion strategies are required in response to increasingly stringent worldwide regulations governing exhaust gas emissions in the transport sector. Among these strategies, the Dual Fuel approach has shown potential to reduce engine-out pollutant emissions without penalizing combustion efficiency. The Dual Fuel concept relies on the formation of a homogeneous mixture of air with a highly volatile fuel (gasoline, methane, ethanol...) which is ignited by direct injection of a high-cetane fuel (Diesel fuel) in the combustion chamber. An improved understanding of the underlying physical phenomena and a detailed insight of the predominant combustion regime(s) are required in order to advance the development of the Dual Fuel combustion strategies. In this context, numerical modeling and optical engine measurements are combined to investigate Dual Fuel combustion. A numerical study, based on the coupling between a turbulent combustion model for flame propagation in stratified mixtures (ECFM3Z) and a tabulated kinetics model for auto-ignition (TKI), was conducted to evaluate the capacity of the existing models to cope with the various combustion regimes that might exist in Duel Fuel combustion strategies. Transition criteria were added and evaluated in order to improve the coupling between the two models and to better predict the transitions between auto-ignition and flame propagation. In addition, an experimental investigation, including equivalence ratio, premixed fuel and dilution variations, was performed in an optical engine. The objective was to apply advanced optical diagnostic techniques to thoroughly characterize the Dual Fuel combustion process and thus enhancing CFD model developments.

Identiferoai:union.ndltd.org:theses.fr/2015ORLE2064
Date27 April 2015
CreatorsBelaid-Saleh, Haïfa
ContributorsOrléans, Mounaïm-Rousselle, Christine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds