Return to search

Rational and harmonic approximation on F.P.A. sets

Let <i>K</i> be a compact subset of complex <i>N</i>-dimensional space, where <i>N</i> ≥ 1. Let <i>H</i>(<i>K</i>) denote the functions analytic in a neighborhood of <i>K</i>. Let <i>R</i>(<i>K</i>) denote the closure of <i>H</i>(<i>K</i>) in <i>C</i>(<i>K</i>). We study the problem: What is <i>R</i>(<i>K</i>)?

The study of <i>R</i>(<i>K</i>) is contained in the field of rational approximation. In a set of lecture notes, T. Gamelin [6] has shown a certain operator to be essential to the study of rational approximation. We study properties of this operator.

Now let <i>K</i> be a compact subset of real <i>N</i>-dimensional space, where <i>N</i> ≥ 2. Let harm<i>K</i> denote those functions harmonic in a neighborhood of <i>K</i>. Let <i>h</i>(<i>K</i>) denote the closure of harm<i>K</i> in <i>C</i>(<i>K</i>). We also study the problem: What is <i>h</i>(<i>K</i>)?

The study of <i>h</i>(<i>K</i>) is contained in the field of harmonic approximation. As well as obtaining harmonic analogues to our results in rational approximation, we also produce a harmonic analogue to the operator studied in Gamelin's notes. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/39825
Date13 October 2005
CreatorsFerry, John
ContributorsMathematics, Olin, Robert F., McCoy, Robert A., Rossi, John F., Thomson, James E., Wheeler, Robert L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatvi, 164, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 24707058, LD5655.V856_1991.F477.pdf

Page generated in 0.0034 seconds