Gaussian graphical model has been a popular tool to investigate conditional dependency between random variables by estimating sparse precision matrices. Two problems have been discussed. One is to learn multiple Gaussian graphical models at multilevel from unknown classes. Another one is to select Gaussian process in semiparametric multi-kernel machine regression.
The first problem is approached by Gaussian graphical model. In this project, I consider learning multiple connected graphs among multilevel variables from unknown classes. I esti- mate the classes of the observations from the mixture distributions by evaluating the Bayes factor and learn the network structures by fitting a novel neighborhood selection algorithm. This approach is able to identify the class membership and to reveal network structures for multilevel variables simultaneously. Unlike most existing methods that solve this problem by frequentist approaches, I assess an alternative to a novel hierarchical Bayesian approach to incorporate prior knowledge.
The second problem focuses on the analysis of correlated high-dimensional data which has been useful in many applications. In this work, I consider a problem of detecting signals with a semiparametric regression model which can study the effects of fixed covariates (e.g. clinical variables) and sets of elements (e.g. pathways of genes). I model the unknown high-dimension functions of multi-sets via multi-Gaussian kernel machines to consider the possibility that elements within the same set interact with each other. Hence, my variable selection can be considered as Gaussian process selection. I develop my Gaussian process selection under the Bayesian variable selection framework. / Doctor of Philosophy / A network can be represented by nodes and edges between nodes. Under the assumption of multivariate Gaussian distribution, a graphical model is called a Gaussian graphical model, where edges are undirected. Gaussian graphical model has been studied for years to understand conditional dependency structure between random variables. Two problems have been discussed.
In the first project, I consider learning multiple connected graphs among multilevel variables from unknown classes. I estimate the classes of the observations from the mixture distributions. This approach is able to identify the class membership and to reveal network structures for multilevel variables simultaneously. Unlike most existing methods that solve this problem by frequentist approaches, I assess an alternative to a novel hierarchical Bayesian approach to incorporate prior knowledge.
The second problem focuses on the analysis of correlated high-dimensional data which has been useful in many applications. In this work, I consider a problem of detecting signals with a semiparametric regression model which can study the effects of fixed covariates (e.g. clinical variables) and sets of elements (e.g. pathways of genes). I model the unknown high-dimension functions of multi-sets via multi-Gaussian kernel machines to consider the possibility that elements within the same set interact with each other. Hence, my variable selection can be considered as Gaussian process selection. I develop my Gaussian process selection under the Bayesian variable selection framework
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/101092 |
Date | 21 June 2019 |
Creators | Lin, Jiali |
Contributors | Statistics, Kim, Inyoung, Deng, Xinwei, Guo, Feng, Terrell, George R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0121 seconds