La survie nette est un indicateur très utilisé en épidémiologie des cancers. Il s'agit de la survie que l'on observerait si la seule cause de mortalité était le cancer ; il est le seul indicateur épidémiologique utilisable à des fins de comparaisons de survie (entre périodes/pays) car il s'affranchit des éventuelles différences de mortalité dues aux autres causes que le cancer. Le premier objectif de notre travail était d'analyser les performances des différentes méthodes d'estimation de la survie nette sur données simulées ainsi que sur données réelles afin que les méthodes non biaisées soient reconnues scientifiquement et soient les seules à être utilisées par la suite. Nous avons ainsi démontré que deux approches étaient capables d'estimer sans biais la survie nette : l'approche non paramétrique de Pohar-Perme et l'approche reposant sur une modélisation multivariée du taux de mortalité en excès dû au cancer. Cette dernière approche impose une stratégie de construction difficile à mettre en place. Le deuxième objectif était de développer une boîte à outils composée de différents tests permettant de vérifier les différentes hypothèses faites lors de la construction d'un modèle de régression du taux de mortalité en excès. Ces hypothèses concernent habituellement la proportionnalité ou non de l'effet des covariables, leur forme fonctionnelle, ainsi que la fonction de lien utilisée. Le troisième objectif était une application épidémiologique qui visait à étudier l'impact des facteurs pronostiques, tel que le stade au diagnostic, sur la survie nette conditionnelle, en d'autres termes sur la dynamique du taux de mortalité en excès, après la survenue d'un cancer du côlon / Net survival is one of the most important indicators in cancer epidemiology. It is defined as the survival that would be observed if cancer were the only cause of death. This is the only one indicator allowing comparisons of cancer impact between countries or time periods because it is not influenced by death because of other causes. The first objective of this work was to compare the performance of several estimators of the net survival in a simulation study and then on real data in order to promote unbiased methods. Those methods are the non-parametric Pohar-Perme method and the parametric multivariable excess rate model. The latest one needs a model building strategy. The use of diagnostic procedures for model checking is an essential part of the modeling process. The second objective was to develop a tool box composed of diagnostic tools allowing to check hypothesis usually considered when constructing an excess mortality rate model, that is, the proportionality or not of the effect of covariates, their functional form and the link function. The third objective deals with the study of the impact of prognostic variables, such as stage at diagnosis, on conditional net survival, that is, on the dynamic of the excess hazard mortality after the diagnosis of colon cancer
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10294 |
Date | 16 December 2014 |
Creators | Danieli, Coraline |
Contributors | Lyon 1, Bossard, Nadine, Grosclaude, Pascale |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds