Les êtres humains définissent naturellement leur espace quotidien en unités discrètes. Par exemple, nous sommes capables d'identifier le lieu où nous sommes (e.g. le bureau 205) et sa catégorie (i.e. un bureau), sur la base de leur seule apparence visuelle. Les travaux récents en reconnaissance de lieux sémantiques, visent à doter les robots de capacités similaires. Ces unités, appelées "lieux sémantiques", sont caractérisées par une extension spatiale et une unité fonctionnelle, ce qui distingue ce domaine des travaux habituels en cartographie. Nous présentons nos travaux dans le domaine de la reconnaissance de lieux sémantiques. Ces derniers ont plusieurs originalités par rapport à l'état de l'art. Premièrement, ils combinent la caractérisation globale d'une image, intéressante car elle permet de s'affranchir des variations locales de l'apparence des lieux, et les méthodes basées sur les mots visuels, qui reposent sur la classification non-supervisée de descripteurs locaux. Deuxièmement, et de manière intimement reliée, ils tirent parti du flux d'images fourni par le robot en utilisant des méthodes bayésiennes d'intégration temporelle. Dans un premier modèle, nous ne tenons pas compte de l'ordre des images. Le mécanisme d'intégration est donc particulièrement simple mais montre des difficultés à repérer les changements de lieux. Nous élaborons donc plusieurs mécanismes de détection des transitions entre lieux qui ne nécessitent pas d'apprentissage supplémentaire. Une deuxième version enrichit le formalisme classique du filtrage bayésien en utilisant l'ordre local d'apparition des images. Nous comparons nos méthodes à l'état de l'art sur des tâches de reconnaissance d'instances et de catégorisation, en utilisant plusieurs bases de données. Nous étudions l'influence des paramètres sur les performances et comparons les différents types de codage employés sur une même base.Ces expériences montrent que nos méthodes sont supérieures à l'état de l'art, en particulier sur les tâches de catégorisation. / Human beings naturally organize their space as composed of discrete units. Those units, called "semantic places", are characterized by their spatial extend and their functional unity. Moreover, we are able to quickly recognize a given place (e.g. office 205) and its category (i.e. an office), solely on their visual appearance. Recent works in semantic place recognition seek to endow the robot with similar capabilities. Contrary to classical localization and mapping work, this problem is usually tackled as a supervised learning problem. Our contributions are two fold. First, we combine global image characterization, which captures the global organization of the image, and visual words methods which are usually based unsupervised classification of local signatures. Our second but closely related, contribution is to use several images for recognition by using Bayesian methods for temporal integration. Our first model don't use the natural temporal ordering of images. Temporal integration is very simple but has difficulties when the robot moves from one place to another.We thus develop several mechanisms to detect place transitions. Those mechanisms are simple and don't require additional learning. A second model augment the classical Bayesian filtering approach by using the local order among images. We compare our methods to state-of-the-art algorithms on place recognition and place categorization tasks.We study the influence of system parameters and compare the different global characterization methods on the same dataset. These experiments show that our approach while being simple leads to better results especially on the place categorization task.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112025 |
Date | 20 February 2012 |
Creators | Dubois, Mathieu |
Contributors | Paris 11, Tarroux, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds