The load forecasting has become an important role in the operation of power system, and several models by using different techniques have been applied to solve these problems. In the literature, the linear regression models are considered as a traditional approach to predict power consumption, and more recently, the artificial neural network (ANN) models have received more attention for a great number of successful and practical applications. This report introduces both linear regression and ANN models to predict the power consumption for Fortum in Ekerö. The characteristics of power consumption of different kinds of consumers are analyzed, together with the effects of weather parameters to power consumption. Further, based on the gained information, the numerical models of load forecasting are built and tested by the historical data. The predictions of power consumption are focus on three cases separately: total power consumption in one year, daily peak power consumption during winter and hourly power consumption. The processes of development of the models will be described, such as the choice of the variables, the transformations of the variables, the structure of the models and the training cases of ANN model. In addition, two linear regression models will be built according to the number of input variables. They are simple linear regression with one input variable and multiple linear regression with several input variables. Comparison between the linear regression and ANN models will be carried out. In the end, it finds out that the linear regression obtains better results for all the cases in Ekerö. Especially, the simple linear regression outperforms in prediction of total power consumption in one year, and the multiple linear regression is better in prediction of daily peak load during the winter.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-152522 |
Date | January 2007 |
Creators | Tong, Fan |
Publisher | KTH, Elektroteknisk teori och konstruktion |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | EES Examensarbete / Master Thesis ; XR-EE-ETK 2007:003 |
Page generated in 0.0019 seconds