使用傳統迴歸的方式對未知事物做預測,往往不能夠精準的做出結論,縱使在相同的條件下實際去操作,也很難得到相同的結果,因此模糊數概念的建立,並運用在迴歸分析上更能有效描述預測結果的不確定性。然而模糊線性迴歸(Fuzzy Linear Regression)在利用最小平方法處理問題時,往往過於著重在模糊區間的中心與分展度上,而忽略了描述資料的模糊性,使得隸屬度函數(membership function)的功能受到相當大的限制。本文在D'Urso和Gastaldi(2000)所提出的雙重模糊線性迴歸(doubly fuzzy linear regression)模型架構下,利用Yang和Ko(1996)在LR空間下所定義模糊數間的距離公式,導出能反映隸屬度函數的最小平方估計,並引進一些傳統迴歸中常用來偵測離群值(outlier)與具影響力觀察值(influence observation)的概念與技巧,應用在模糊線性迴歸資料的偵測上。
Identifer | oai:union.ndltd.org:CHENGCHI/G0093751003 |
Creators | 趙家慶 |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | Unknown |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0013 seconds