Return to search

Viscous Relaxation Times of the Core and Mantle of Mars from Observations of Tidal Decay of the Orbit of Phobos

The orbit of Phobos exhibits an along-track acceleration, which suggests energy dissipation in the Mars-Phobos system. We hypothesize that the inferred dissipation occurs within Mars. We explore the response of a layered, incompressible Maxwell viscoelastic Mars to tidal forcing by Phobos using normal mode relaxation theory. Our results elucidate the general behavior of a tidally forced viscoelastic body, and have implications for the viscoelastic structure of Mars. We find the real and imaginary part of the degree-two tidal Love number for Mars to be 0.168 and -9.32x10^−4 respectively. Models which satisfy these and other constraints have either: a fluid core with radius 2040 km and density 5410 kg/m^3; or an elastic inner core with radius 1200 km and density 6700 kg/m^3, along with a fluid outer core with thickness 850 km and density 4850 kg/m^3. These findings support previous hypotheses that Mars has at least a fluid outer core.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31386
Date19 December 2011
CreatorsPithawala, Taronish M.
ContributorsGhent, Rebecca R., Bills, Bruce G.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds