Return to search

Transformation and Fate of Nanoscale ZnO, Ag, and CeO2 in Different Aquatic Environments

The fate and transformation of laboratory-prepared nano-ZnO, nano-Ag and nano-CeO2 in three aqueous solutions under different environmental conditions were investigated in this work. Over the past decades nanomaterials have been widely used in different technical fields and consumer goods. As a result, nanomaterials might enter the environmental media via different routes and then posed potential hazards to the environment and human health. Researches in this regard have received much attention worldwide. In this work it was found that the solubility of each nanomaterial was highly influenced by the solution pH, but not by the solution temperature. The maximal solubility for the tested nanomaterials was obtained at pH 3, namely about 100% for nano-ZnO and lower than 2% for both nano-Ag and nano-CeO2. The solution pH and ionic strength were found to affect the stability of nanoparticles in different aquatic environments. For the solution pH of higher than the isoelectric point of the concerned nanomaterial, the higher the solution pH is, the greater the degree of stabilization of nanoparticles would be. On the contrary, nanoparticles aggregated as the ionic strength of the solution exceeded its critical aggregation concentration (CAC). CAC for each concerned nanomaterial could also be graphically determined as the attachment efficiency (£\) of nanoparticles increased with increasing ionic strength of the solution and then leveled off after reaching CAC. Experimental results also showed that Zn(OH)2(s) would form when nano-ZnO was in the solution of pH 10. The crystalline structure of the said precipitates was confirmed by X-ray diffraction. Likewise, Ce4+ dissolved from nano-CeO2 reacted with SO42- in aqueous solution yielding Ce(SO4)2(s). Clearly, transformation of nanomaterials might take place when they are in contact with various species in different aquatic environments. Humic acid in aqueous solution was found to be beneficial to the stability of nanomaterial of concern. Efforts have also been made to study the reaction behaviors among di(2-ethylhexyl)phthalate, erythromycin, and selected nanomaterials when they co-existed in the same solution. Their interactions, however, seemed to be unobvious. In this work it was found that under sunlight irradiation nano-ZnO did show its antibiotic effect due to photocatalysis. Nano-Ag was proven to have a strong antibacterial ability even in natural aquatic environments. It yielded the total bacteria survival ratio of less than 2% within one hour of reaction. In summary, the findings of this study showed that the behaviors of nano-ZnO, nano-Ag, and nano-CeO2 in aqueous solutions could be greatly influenced by different factors in different reaction systems.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0305112-182518
Date05 March 2012
CreatorsSung, Wen-Ting
ContributorsYuan-Yao Li, Gordon C. C. Yang, Chia-Chen Wang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0305112-182518
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0024 seconds