Return to search

Application de techniques parcimonieuses et hiérarchiques en reconnaissance de la parole

Les systèmes de reconnaissance de la parole sont fondamentalement dérivés des domaines du traitement et de la modélisation statistique des signaux. Depuis quelques années, d'importantes innovations de domaines connexes comme le traitement d'image et les neurosciences computationnelles tardent toutefois à améliorer la performance des systèmes actuels de reconnaissance de parole. La revue de la littérature a suggéré qu'un système de reconnaissance vocale intégrant les aspects de hiérarchie, parcimonie et grandes dimensions joindrait les avantages de chacun. L'objectif général est de comprendre comment l'intégration de tous ces aspects permettrait d'améliorer la robustesse aux bruits additifs d'un système de reconnaissance de la parole. La base de données TI46 (mots isolés, faible-vocabulaire) est utilisée pour effectuer l'apprentissage non-supervisé et les tests de classification. Les différents bruits additifs proviennent de la base de données NOISEX-92, et permettent d'évaluer la robustesse en conditions de bruit réalistes. L'extraction de caractéristiques dans le système proposé est effectuée par des projections linéaires successives sur des bases, permettant de couvrir de plus en plus de contexte temporel et spectral. Diverses méthodes de seuillage permettent de produire une représentation multi-échelle, binaire et parcimonieuse de la parole. Au niveau du dictionnaire de bases, l'apprentissage non-supervisé permet sous certaines conditions l'obtention de bases qui reflètent des caractéristiques phonétiques et syllabiques de la parole, donc visant une représentation par objets d'un signal. L'algorithme d'analyse en composantes indépendantes (ICA) s'est démontré mieux adapté à extraire de telles bases, principalement à cause du critère de réduction de redondance. Les analyses théoriques et expérimentales ont montré comment la parcimonie peut contourner les problèmes de discrimination des distances et d'estimation des densités de probabilité dans des espaces à grandes dimensions. Il est observé qu'un espace de caractéristiques parcimonieux à grandes dimensions peut définir un espace de paramètres (p.ex. modèle statistique) de mêmes propriétés. Ceci réduit la disparité entre les représentations de l'étage d'extraction des caractéristiques et celles de l'étage de classification. De plus, l'étage d'extraction des caractéristiques peut favoriser une réduction de la complexité de l'étage de classification. Un simple classificateur linéaire peut venir compléter un modèle de Markov caché (HMM), joignant une capacité de discrimination accrue à la polyvalence d'une segmentation en états d'un signal. Les résultats montrent que l'architecture développée offr de meilleurs taux de reconnaissance en conditions propres et bruités comparativement à une architecture conventionnelle utilisant les coefficients cepstraux (MFCC) et une machine à vecteurs de support (SVM) comme classificateur discriminant. Contrairement aux techniques de codage de la parole où la transformation doit être inversible, la reconstruction n'est pas importante en reconnaissance de la parole. Cet aspect a justifié la possibilité de réduire considérablement la complexité des espaces de caractéristiques et de paramètres, sans toutefois diminuer le pouvoir de discrimination et la robustesse.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/6159
Date January 2013
CreatorsBrodeur, Simon
ContributorsRouat, Jean
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeMémoire
Rights© Simon Brodeur

Page generated in 0.002 seconds