In the traditional login systems, we use the username and the password to identify the legalities of users. It is a simple and convenient way to identify, but passwords could be stolen or copied by someone who tries to invade the system illegally. Adding one protective mechanism to identify users, the way of biometrics are brought out, such as keystroke dynamics, fingerprints, DNA, retinas and so on that are unique characteristics of each individuals, it could be more effective in preventing trespassing. This thesis uses keystroke biometrics as research aspects of user authentication. The advantages of this system are low-cost and high security to identify users using keyboard to calculate the time of keystrokes. In this thesis, we use statistical way to examine the researches and experiments. Chosen length of the username and password are greater than or equal to 9 characters, and learning sample sizes are 20 and adapting the sample adaptation mechanism, the results show that we achieved by False Acceptance Rate of 0.85%, False Rejection Rate of 1.51% and Average False Rate of 1.18%; all reach the high levels of safeties.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0128108-135223 |
Date | 28 January 2008 |
Creators | Hsin, Tsung-Chin |
Contributors | Chia-Mei Chen, D. J. Guan, Chun-I Fan |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0128108-135223 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds