Return to search

Spectral boundary value problems and elliptic equations on singular manifolds

For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2514
Date January 1997
CreatorsSchulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris, Shatalov, Victor
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0021 seconds