Return to search

Analysis of the repair of topoisomerase II DNA damage

A large number of anti-cancer chemotherapeutics target DNA topoisomerases. Etoposide is a specific topoisomerase II poison which causes reversible double strand DNA breaks. The focus of this project is to analyze the repair of DNA damage induced by etoposide.. Double strand DNA break repair is mediated by through either non-homologous end joining (NHEJ) or homologous recombination. NHEJ repairs through direct ligation of a double stranded break while homologous recombination utilizes a homologous template to recover the wild type sequence. A reporter cassette, RYDR-GFP, has been stably integrated into HeLa cells. This reporter contains an ultra-high affinity topoisomerase II cleavage site (RY) placed in the middle of a mutant GFP sequence. Flanking this sequence is a corresponding stretch of wild type GFP that is used as template to repair the break and restore gene function yielding GFP positive cells. Titrations with etoposide have shown that a logarithmic increase in drug concentration yields a corresponding increase in repair through homologous recombination (HR). This result demonstrates that topoisomerase II mediated damage is efficiently repaired by the process of HR. To examine NHEJ repair, a doxycycline inducible, stably integrated NHEJ HeLa cell reporter cassette was also evaluated. The data indicates that repair of topoisomerase II mediated DNA damage occurs more efficiently through the HR pathway. Collectively, the data suggests that tumor cells proficient in HR repair may effectively elude treatment by topoisomerase II targeting drugs.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2128
Date01 May 2011
CreatorsGoldstein, Eric D.
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.0015 seconds