This thesis mainly presents the design and
implementation of a flyback converter with single-stage power factor correction. In the beginning, we propose different power factor collection (PFC) techniques referring to the inductor current of converter under three kinds of operation modes. In the continuous mode, we adopt the nonlinear-carrier control (NLC). Then, in the discontinuous mode and boundary mode, voltage-follower control (VFC) and transition mode technique control (TM) are adopted respectively. As to the converter analysis, we derive and verify the results of a small-signal model and perform equivalent circuit analysis by state-space averaging method, loss-free resistor (LFR) model, averaging method for two-time-scale system (AM), and current injected equivalent circuit approach (CIECA). Results derived from the above-mentioned models are compared and verified to be accurate of the system model. Furthermore, the control function and element design are implemented by simulation. We perform a PI controller to achieve better power factor based on results of analysis of the time and frequency domains analysis. Finally, three sets of different hardware are fabricated and verified depending on measured result and theoretical simulation.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0802107-120843 |
Date | 02 August 2007 |
Creators | Cheng, Jiang-Jian |
Contributors | Jerome Chang, Geeng-Kwei Chang, I-Chih Kao, Tzuen-Lih Chern, Yung-Chun Wu |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0802107-120843 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.002 seconds