Return to search

The Small Signal and Nonlinear Models of InGaAs pseudomorphic High Electron Mobility Transistors

Recent advances in wireless communication industry, radio- frequency circuits are developing fast. For power amplifiers, the active circuits are mainly composed of transistors where withstand high voltage and current. The excellent transistors characteristic result in good circuit performances.
In the thesis, the modeling of InGaAs pseudomorphic high electron mobility transistor was provided by Win Semiconductor Corporation. The established small signal model contains extrinsic and intrinsic elements. The extrinsic elements are extracted by simple method without fitting process for long time. Then, the intrinsic elements are obtained by conventional matrix transformations. The each element of models is varied with different gate width area are also discussed.
Finally, the nonlinear models are expanded upon the concept of small signal model. Due to some of intrinsic elements are significantly varied with bias, small signal models have not applied to nonlinear circuit simulations. For developing nonlinear models, the nonlinear elements characteristics are described by empirical fitting equations. The accuracy of models is achieved by comparing simulated and on wafer measurement results, including DC¡Bsmall signal and large signal power characteristics.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0902109-111931
Date02 September 2009
CreatorsCheng, Chih-Han
ContributorsChih-Wen Kuo, Ken-Huang Lin, Wen-Liang Li, Tzyy-Sheng Horng, Chie-In Lee
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0902109-111931
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0019 seconds