Return to search

Adsorption and Transport of Drug-Like Molecules at the Membrane of Living Cells Studied by Time-Resolved Second-Harmonic Light Scattering

Understanding molecular interactions at the surfaces of cellular membranes, including adsorption and transport, is of fundamental importance in both biological and pharmaceutical studies. At present, particularly with respect to small and medium size (drug-like) molecules, it is desirable to gain an understanding of the mechanisms that govern membrane adsorption and transport. To characterize drug-membrane interactions and mechanisms governing the process of molecular uptake at cellular membranes in living organisms, we need to develop effective experimental techniques to reach quantitative and time-resolved analysis of molecules at the membrane surfaces. Also, we preferably want to develop label-free optical techniques suited for single-cell and live cell analysis. Here, I discuss the nonlinear optical technique, second-harmonic light scattering (SHS), for studying molecule-membrane interactions and transport of molecules at the membrane of living cells with real-time resolution and membrane surface-specificity. Time-resolved SHS can quantify adsorption and transport of molecules, with specific nonlinear optical properties, at living organisms without imposing any mechanical stress onto the membrane. This label-free and surface-sensitive technique can even differentiate molecular transport at individual membranes within a multi-membrane cell (e.g., bacteria). In this dissertation, I present our current research and accomplishments in extending the capabilities of the SHS technique to study molecular uptake kinetics at the membranes of living cells, to monitor bacteria membrane integrity, to characterize the antibacterial mechanism-of-action of antibiotic compounds, to update the molecular mechanism of the Gram-stain protocol, to pixel-wise mapping of the membrane viscosity of the living cells, and to probe drug-induced activation of bacterial mechanosensitive channels in vitro. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2359
Date January 2018
CreatorsSharifian Gh., Mohammad
ContributorsDai, Hai-Lung, Stanley, Robert J., Willets, Katherine A., Borguet, Eric, Yang, Weidong, Dr.
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format220 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2341, Theses and Dissertations

Page generated in 0.0018 seconds