依時間順序出現之一連串觀測值,通常會呈現某一型態,而根據所產生的
型態可以作為判斷事件發生的基礎。例如,震波形成原因的判斷﹔追查環
境污染源﹔以及在醫學方面,辨識一個正常人心電圖的型態與患有心臟病
的病人其心電圖的型態…等。對於這些問題,傳統之辨識方法常因前提假
設的限制而失去其準確性。在本文中,我們應用神經網路中的逆向傳播演
算法則來訓練網路,並利用此受過訓練的網路來辨別線性時間數列ARIMA
及非線性時間數列 BL(1,0,1,1)。結果發現,網路對於模擬資料中雙線性
係數介於0.2至$0.8$之間的資料有高達$80\%$以上的辨識能力。而在實例
研究中,我們訓練網路來判斷震波形成的原因,其正確率亦高達80\%以上
。同時,我們也將神經網路應用在環境保護方面,訓練網路來判斷二地區
空氣品質的型態。 / A series of observations indexed in time often produces a
pattern that may form a basis for discriminatingetween
different classes of events. For instance, in theeology, what
are the causes of seismic waves? a earthquakesr the nuclear
explosions ?in the eathenics, we can use theethod to inquire
the source which pollutes the air in somelace, and in the
medicine, to distinguish the difference oflectrocardiograms
between a health person and an a patient..ect. In this paper,
we utilize the back-propagation to trainnetwork and use of the
trained networks to judge the linearRIMA(1,0,0) model between
the nonlinear BIL(1,0,1,1) model,e can find that the trained
network has a good recognitionhose accurate rate is above 80\%
for the coefficient of the bilinear model being equal to 0.5 or
0.8. In a living example, we have trained a network to
decidehich is the cause of seismic wave, and the trained
networkhose accurate rate is larger than 80\%. At the same time,
e also applied neural network in environmental protection.
Identifer | oai:union.ndltd.org:CHENGCHI/B2002004195 |
Creators | 蘇曉楓, Su, Shiau Feng |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0016 seconds