Return to search

Inferência e diagnósticos em modelos assimétricos / Inference and diagnostics in asymmetric models

Este trabalho apresenta um estudo de inferência e diagnósticos em modelos assimétricos. A análise de influência é baseada na metodologia para modelos com dados incompletos, que é relacionada ao algoritmo EM (Zhu e Lee, 2001). Além dos modelos de regressão Normal Assimétrico (Azzalini, 1999) e t-Normal Assimétrico (Gómez, Venegas e Bolfarine, 2007) existentes, são desenvolvidas duas novas classes de modelos, denominados modelos de misturas de escala normal assimétricos (englobando as distribuições Normal, t-Normal, Slash, Normal-Contaminada e Exponencial-potência Assimétricas) e modelos lineares mistos robustos assimétricos, utilizando distribuições de misturas de escalas normais assimétricas para o efeito aleatório e distribuições de misturas de escalas para o erro aleatório. Para o modelo misto, a matriz de informação de Fisher observada é calculada utilizando a aproximação de Louis (1982) para dados incompletos. Para todos os modelos, algoritmos tipo EM são desenvolvidos de forma a fornecer uma solução numérica para os parâmetros dos modelos de regressão. Para cada modelo de regressão, medidas de bondade de ajuste são realizadas via inspeção visual do gráfico de envelope simulado. Para os modelos de misturas de escalas normais assimétricos, um estudo de robustez do algoritmo EM proposto é desenvolvido, determinando a eficácia dos estimadores apresentados. Aplicações dos modelos estudados são realizadas para os conjuntos de dados do Australian Institute of Sports (AIS), para o conjunto de dados sobre qualidade de vida de pacientes (mulheres) com câncer de mama, em um estudo realizado pelo Centro de Atenção Integral à Saúde da Mulher (CAISM) em conjunto com a Faculdade de Ciências Médicas, da Universidade Estadual de Campinas e para o conjunto de dados de colesterol de Framingham. / This work presents a study of inference and diagnostic in asymmetric models. The influence analysis is based in the methodology for models with incomplete data, that is related to the algorithm EM (Zhu and Lee, 2001). Beyond of the existing asymmetric normal (Azzalini, 1999) and t-Normal asymmetric (Gómez, Venegas and Bolfarine, 2007) regression models, are developed two new classes of models, namely asymmetric normal scale mixture models (embodying the asymmetric Normal, t-Normal, Slash, Contaminated-Normal and Power-Exponential distributions) and asymmetric robust linear mixed models, utilizing asymmetric normal scale mixture distributions for the random effect and normal scale mixture distributions for the random error. For the mixed model, the observed Fisher information matrix is calculated using the Louis\' (1982) approach for incomplete data. For all models, EM algorithms are developed, that provide a numeric solution for the parameters of the regression models. For each regression model, measures of goodness of fit are realized through visual inspection of the graphic of simulated envelope. For the asymmetric normal scale mixture models, a study of robustness of the proposed EM algorithm is developed to determine the efficacy of the presented estimators. Applications of the studied models are made for the data set of the Australian Institute of Sports (AIS), for the data set about quality of life of patients (women) with breast cancer, in a study made by Centro de Atenção Integral à Saúde da Mulher (CAISM) in conjoint with the Medical Sciences Faculty, of the Campinas State\'s University and for the data set of Framingham\'s cholesterol study.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28042008-113150
Date20 March 2008
CreatorsFerreira, Clécio da Silva
ContributorsBolfarine, Heleno
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0063 seconds