This Thesis deals with the power of a statistical test and the associated problem of determining the appropriate sample size. It should be large enough to meet the requirements of the probabilities of errors of both the first and second kind. The aim of this Thesis is to demonstrate theoretical methods that result in derivation of formulas for minimum sample size determination. For this Thesis, three important probability distributions have been chosen: Normal, Bernoulli, and Exponential.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:264617 |
Date | January 2016 |
Creators | Kubrycht, Pavel |
Contributors | Malá, Ivana, Bílková, Diana |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds