When we interpret the input vector of a Boolean function as a binary number, we define interval Boolean function fn [a,b] so that fn [a,b](x) = 1 if and only if a ≤ x ≤ b. Disjunctive normal form is a common way of representing Boolean functions. Minimization of DNF representation of an interval Boolean function can be per- formed in linear time. The natural generalization to k-interval functions seems to be significantly harder to tackle. In this thesis, we discuss the difficulties with finding an optimal solution and introduce a 2k-approximation algorithm.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:331787 |
Date | January 2015 |
Creators | Bártek, Filip |
Contributors | Kučera, Petr, Gregor, Petr |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.001 seconds