Cette thèse est consacrée à l'analyse variationnelle des problèmes d'équilibre avec contraintes d'équilibre (problème d'optimisation bi-niveaux). Ce travail tire sa motivation de modèles de marchés de l'électricité issus de la théorie des jeux non coopératifs. Dans de tels marchés, un régulateur, appelé ISO (Independant System Operator), gère le clearing et les flux d'électricité entre zones d'enchère. Nous avons développé cette analyse variationnelle selon différents axes. Tout d'abord et sur un modèle spécifique, nous avons analysé de façon exhaustive la notion de meilleure réponse d'un producteur, grâce à la détermination d'une formule explicite pour l'unique solution du problème de bas niveau de l'ISO. Puis, pour un modèle plus général de marché, la stabilité des points M(ordukhovitch)-stationnaires a été étudiée via la notion de codérivée limiting de second ordre des opérateurs multivoques. En fin, le concept d'opérateur normal limiting a été introduit et des règles de calcul ont été obtenues, fournissant ainsi un nouvel outil performant pour l'analyse quasiconvexe. L'idée de base a été l'utilisation, pour des cônes normaux à des sous-niveaux d'une fonction, de la construction limiting classiqueen analyse variationnelle moderne. Cette approche est motivée par l'hypothèse de la quasiconvexité des fonctions de coût généralement faite dans de nombreux jeux non-coopératifs. / This thesis is focused on nonsmooth variational analysis of equilibrium problems with equilibrium constraints. Such an eff ort is directly motivated by a model of electricity markets encountered in non-cooperative game theory. In such a marketthere is the so-called Independent System Operator (ISO), a regulator entity that manages the market clearing and the electricity dispatch. This market structure makes the problem of electricity markets challenging from the mathematicalpoint of view. In this area, we discovered several possibilities for further development. First, the best responses of producers in a speci fic variant of a model are fully analysed. This progress was due to an analytical formula for a uniquesolution to the lower level ISO problem. Then, for a more general model of the market, stability of the so-called M(ordukhovich)-stationarity points is provided based on the concept of coderivatives. To this end, the respective second order limiting coderivative was computed. Finally, the concept of limiting normal operator is proposed, a new tool for quasiconvex analysis exhibiting workable calculus rules. The basic idea is to employ the same limiting construction that is used in modern variational analysis in connection with normal cones to sets. This topic is motivated by the classical assumption in many non-cooperative games where the loss function of players is often assumed to be quasiconvex.
Identifer | oai:union.ndltd.org:theses.fr/2015PERP0008 |
Date | 26 March 2015 |
Creators | Pistek, Miroslav |
Contributors | Perpignan, Ústav teorie informace a automatizace (République tchèque), Aussel, Didier, Outrata, Jiri |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds