The Miocene climate evolution in North China is preliminarily discussed by means of comparisons in seven climate parameters quantitatively reconstructed by the Coexistence Approach on 34 selected macro- and microfloras over North China. The Miocene temperatures show no great difference in the western and eastern part of North China. Temperature fluctuations, particularly in mean annual temperature, are found within floras from several sites. The fluctuation pattern, from a climate optimum in the Mid Miocene to cooling decline in the Late Miocene, is generally consistent with the global trend of Miocene temperature change. The reconstructed precipitation from all the sites studied shows much wetter conditions in North China during the Miocene than at present, which corroborates the results from paleoprecipitation proxy of fossil mammals. Like the situation in paleo-temperature, the Miocene precipitation from North China shows no distinct difference between the western and eastern regions. It is suggested that North China, particularly in the western part, was by no means under an arid or semi-arid environment during the Miocene. North China is an ideal region for study of the impact of the East Asian monsoon system, however, the pattern of precipitation change derived from the monsoon index (MSH) and mean annual precipitation (MAP) shows contradictory results. Therefore, there appears no definite conclusion on when the East Asian summer monsoon intensified. Possible reasons for inconsistency in temperature and precipitation changes are discussed. Directions of future work to improve the resolution of climate evolution are also pointed out.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17640 |
Date | 01 May 2011 |
Creators | Liu, Yu Sheng, Utescher, Torsten, Zhou, Zhekun, Sun, Bainian |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0019 seconds