Return to search

Classificação e discriminação: um enfoque Bayesiano / Not available

Não disponível / ln this dissertation, we present Bayesian alteniatives for classification probiem under different approaches. First of all, we propose a Box and Cox transformation to have normal data to be used in classification problems. We also consider the classification problem assuming a vector X with a mixture of inultivariate normal distributions, using Bayesian procedures to buiid a classification rule. We also consider the classification for binary data and correlated binary data using the Bayesian approach and also introducing randoin effects to capturate the correlation. For the Bayesian approach, we use MCMC methods and we consider the utilization of the software \"Ox\' as a great altemative for probiems related the efficiency of the algorithm.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22012018-143906
Date20 April 2001
CreatorsWruck, Emerson
ContributorsAchcar, Jorge Alberto
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds