Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de regressão para dados binários correlacionados com covariáveis, podendo ocorrer réplicas. Assumimos os modelos de regressão logístico e probito para dados binários correlacionados considerando efeitos aleatórios com uma mistura de distribuições normais, pois este modelo tem uma grande flexibilidade para ser ajustado aos dados binários correlacionados em muitas aplicações. Também fazemos algumas considerações aos casos onde podem ocorrer repetições das observações ou réplicas. Assumimos distribuições a priori informativas para os parâmetros do modelo e consideramos os algoritmos Gibbs sampling e Metropolis- Hastings, para obter as estimativas de Monte Carlo para as quantidades a posteriori de interesse. Apresentamos também algumas considerações na seleção de modelos utilizando uma medida da discrepância entre o modelo ajustado e os dados (resíduo de Pearson) e utilizando as densidades preditivas (fator de Bayes) estimadas por MCMC (Monte Carlo em Cadeias de Markov). Apresentamos um exemplo númerico para ilustrar os métodos propostos. / In this dissertation, we develop a Bayesian analysis of regression models for correlated binary data in the presence of covariates, including the case with replicates. We consider probit and logistic regression models for correlated binary data assuming random effects with a mixture of normal distributions, since this model have great flexibility to the fitted for correlated binary data. We also present some considerations for the case with replicates. We assume informative prior distributions for the parameters of the model and we use Gibbs sampling and Metropolis-Hastings algorithms to get Monte Cano estimates for the posterior quantities of interest. We also present some considerations for the selection of models using discrepancy measures between the fitted model and the data (Pearson residuais) and using the predictive densities (Bayes factor) estimated by MCMC (Markov Chain Monte Cano). We present a numerical example to illustrate the proposed methodology.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02032018-141504 |
Date | 05 May 2000 |
Creators | Vanderly Janeiro |
Contributors | Jorge Alberto Achcar, Jose Galvao Leite, Josemar Rodrigues |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds