Recentemente uma rede neural multi-camadas, baseada no algoritmo Back- Propagation, foi proposta para resolver problemas de otimização não lineares. Esta rede tem apresentado bons resultados na solução de problemas não lineares restritos e irrestritos. Este trabalho mostra as facilidades e beneficios da aplicação de técnicas de otimização ao algoritmo de aprendizado desta particular rede neural. O termo momentum, o gradiente com busca linear e o método do gradiente conjugado foram incorporados no esquema de aprendizado desta rede neural. Resultados computacionais são apresentados mostrando as vantagens da incorporação destas técnicas nesta rede. Além disso, para verificar a adequabilidade de uso desta particular rede neural, com algumas modificações incorporadas no algoritmo de aprendizado, na solução de problemas de dimensão maior do que os até então testados, uma aplicação é, resolvida usando este modelo para otimização de um sistema hidroelétrico de potência. O sistema é constituído de uma usina térmica, uma usina hidroelétrica e com a possibilidade de transferência de energia de sistema vizinho. Resultados são apresentados e mostram a utilidade desta abordagem quando comparada com resultados obtidos por técnicas tradicionais. / Recently a neural multi-layer network, based on the Back-Propogation algorithm, was proposed for solving nonlinear optimization problems. This network has presented good results in the solution of constrained and unconstrained nonlinear problems. This work shows the feasibilþ and benefits of applying optimization techniques to learning algorithm in this particular neural network. The momentum term, the gradient method whit linear search and conjugate gradient method are incorporate into the learning scheme of this neural network. Computation results are presented showing the advantages of incorporating theses techniques in this network. Besides that, in order to veri$ the adequacy of the use of this particular neural network, with some modifications incorporated in the learning algorithm, in solving the problems of bigger dimension than those already tested, an application is solved using this model for optimizing a hydroelectric potential system. The system is constituted of one thermoelectric plant, one hydroelectric plant and with the possibility of transfer of energy from neighbor system. Results are presented and show the usefulness of this approach when compared with the results obtained by traditional techniques.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29082017-101955 |
Date | 14 August 1996 |
Creators | Martinez, Luciana |
Contributors | Romero, Roseli Aparecida Francelin |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds