O objetivo deste trabalho é o estudo de invariantes associados às curvas analíticas irredutíveis em Cn. Para curvas definidas por uma parametrização ∅ : C → Cn, apresentamos uma descrição algébrica do invariante Ae-codimensão de ∅ , que denotamos por Aecod(∅), em termos das ordens de certas diferenciais de Kähler. Como consequência, obtemos uma relação entre a Ae>cod(∅) e alguns invariantes clássicos da teoria de curvas. Uma descrição mais simples para tal relação é apresentada no caso de curvas planas irredutíveis. Para curvas monomiais em Cn, o principal resultado apresenta uma fórmula para a Aecod(∅) em termos do invariante delta, da dimensão de mergulho e do tipo Cohen-Macaulay do anel local da curva. Comparamos ainda os resultados obtidos para a Aecod(∅), com as relações existentes na literatura sobre o número de Tjurina, no caso de curvas de interseção completa. / The aim of this work is to study invariants of analytic irreducible curves in Cn. For curves given by a parametrization ∅ : C→ Cn , we present an algebraic description of the invariant, Ae-codimension of ∅, denoted by Aecod(∅), in terms of orders of certain Kählor differentials. As a consequence of this approach we get a relation between Aecod(∅) and some classical invariante of curve theory. The simplest description of such relation is given when ∅ is the parametrization of an irreducible plane curve. A more detailed study of monomial curves is given. The main result in this setting is a formula for the Aecod(∅) in terms of the delta invariant, the embedding dimension and the Cohen-Macaulay type of the local ring of curve. Formulas relating the Aecod(∅) and the Tjurina number of a complete intersection is also obtained.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14112014-110524 |
Date | 30 November 2005 |
Creators | Hernandes, Maria Elenice Rodrigues |
Contributors | Ruas, Maria Aparecida Soares |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0338 seconds