Não disponível / Consider the two-point boundary value problem (1; λ, μ) x\" + g ( t, x, x,\', λ, μ) = 0 Mx(0) + Nx(b) = K where x = (x, x\')t; M, N are 2x2 matrices such that the rank (M, N) = 2; K = (K1, K2)t is constant; λ μ are real parameters and g is a sufficiently smooth function of its five variables. If x0 = x0(t) is a solution of (1; 0,0), we study the local bifurcation of solutions of (1, λ, μ) near x0. There is a special emphasis on the case where g(t, x, x\', 0, 0) = g (x, x\') is autonomous under b-periodic boundary conditions, i.e., M = -N = I, K = 0. The case g(t, x, x\', λ μ) =g(x, x\') + λf1(t) + λf2 (t), with fj(t+b) = fj(t), j = 1, 2 is studied together with similar versions which include a forced Lotka-Volterra predator-prev model for two species.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10042019-104120 |
Date | 08 August 1989 |
Creators | Giongo, Maria Angela de Pace Almeida Prado |
Contributors | Táboas, Plácido Zoega |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds