Trend prediction has become an extremely popular practice in many industrial sectors and academia. It is beneficial for strategic planning and decision making, and facilitates exploring new research directions that are not yet matured. To anticipate future trends in academic environment, a researcher needs to analyze an extensive amount of literature and scientific publications, and gain expertise in the particular research domain. This approach is time-consuming and extremely complicated due to abundance of data and its diversity. Modern machine learning tools, on the other hand, are capable of processing tremendous volumes of data, reaching the real-time human-level performance for various applications. Achieving high performance in unsupervised prediction of emerging trends in text can indicate promising directions for future research and potentially lead to breakthrough discoveries in any field of science. This thesis addresses the problem of emerging trend prediction in text in two main steps: it utilizes HDP topic model to represent latent topic space of a given temporal collection of documents, DBSCAN clustering algorithm to detect groups with high-density regions in the document space potentially leading to emerging trends, and applies KLdivergence in order to capture deviating text which might indicate birth of a new not-yet-seen phenomenon. In order to empirically evaluate the effectiveness of the proposed framework and estimate its predictive capability, both synthetically generated corpora and real-world text collections from arXiv.org, an open-access electronic archive of scientific publications (category: Computer Science), and NIPS publications are used. For synthetic data, a text generator is designed which provides ground truth to evaluate the performance of anomaly detection algorithms. This work contributes to the body of knowledge in the area of emerging trend prediction in several ways. First of all, the method of incorporating topic modeling and anomaly detection algorithms for emerging trend prediction is a novel approach and highlights new perspectives in the subject area. Secondly, the three-level word-document-topic topology of anomalies is formalized in order to detect anomalies in temporal text collections which might lead to emerging trends. Finally, a framework for unsupervised detection of early signals of emerging trends in text is designed. The framework captures new vocabulary, documents with deviating word/topic distribution, and drifts in latent topic space as three main indicators of a novel phenomenon to occur, in accordance with the three-level topology of anomalies. The framework is not limited by particular sources of data and can be applied to any temporal text collections in combination with any online methods for soft clustering.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-15507 |
Date | January 2018 |
Creators | Redyuk, Sergey |
Publisher | Högskolan i Skövde, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds