Return to search

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005. / Includes bibliographical references (p. 135-137). / The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those results a thermodynamic analysis is performed to determine fission product vapor pressures, oxygen partial pressure, and carbon monoxide and carbon dioxide gas pressures within the fuel particle. Using the insight gained from the chemical analysis, a chemical failure model is incorporated into the MIT fuel performance code, TIMCOAT. Palladium penetration of the SiC layer is added to the fracture mechanics failure model. Rare-earth fission product and palladium corrosion of the SiC layer are additionally modeled. The amoeba effect is added as a new failure mode. The palladium penetration model has the most significant result on the overall fuel performance model and increases the number of predicted particle failures. The thinning of the SiC layer due to fission product corrosion has a slight effect on the overall fuel performance model. Finally, the amoeba effect model does not lead to any particle failures, but adds to the completeness of the overall model. / by Jane T. Diecker. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/34453
Date January 2005
CreatorsDiecker, Jane T
ContributorsRonald G. Ballinger., Massachusetts Institute of Technology. Dept. of Nuclear Engineering., Massachusetts Institute of Technology. Department of Nuclear Engineering, Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format137 p., 7540654 bytes, 7546383 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0016 seconds