Return to search

Cluster-state creation in liquid-state NMR

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2007. / Includes bibliographical references (p. 57-60). / The subject of this thesis is devoted to a class of multiparticle entangled states known as the cluster-states. In particular, we focused on a system of four spins and studied the entanglement properties of a four-qubit cluster-state, using a set of entanglement measures for quantifying multipartite entanglement. We then experimentally prepared the linear cluster-state in a liquid NMR sample of crotonic acid, by applying a set of pulses generated by the Gradient Ascent Pulse Engineering (GRAPE) algorithm on a temporally averaged pseudo-pure state of four carbon spins. While our spectral results were consistent with the creation of a linear cluster-state, the reconstruction of the experimental density matrix via a full state tomography of the system revealed additional challenges in the detection of certain desired spin terms. These problems must be overcome before the system could be studied quantitatively. / by Jennifer T. Choy. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/41682
Date January 2007
CreatorsChoy, Jennifer T
ContributorsDavid G. Cory., Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering., Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format60 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.2412 seconds