Return to search

Some mechanisms of transverse nuclear magnetic relaxation in model membranes

Experimental proof is presented that some of the motions responsible for transverse relaxation (T₂) in deuterium magnetic resonance (²H NMR) experiments on acyl chains of a model membrane in the liquid crystalline phase are extremely slow on the ²H NMR time scale being characterized by a correlation time T₂ > ѡq⁻¹. The experiments used to investigate these slow motions involve a form of the Carr-Purcell-Meiboom-Gill pulse sequence modified so as to be suitable for ²H NMR (q-CPMG). The most plausible mechanism responsible for T₂ relaxation is the gradual change in the average molecular orientation due to lateral diffusion of the phospholipid molecules along curved membrane surfaces. Presence of such diffusion is directly established by a selective inversion recovery experiment in which magnetization transfer across the spectrum is seen. The results of the T₂ relaxation as measured in the
q-CPMG experiments are fitted to an average correlation time, T₂ ≈ 62 ms, yielding an estimate of the average effective radius of curvature of 1.2 µm for a typical model membrane system, in good agreement with other methods of measurement.
The implications of this main result are examined for a number of model membranes; in particular, considerable changes are seen in the character of molecular motions in systems containing
small concentrations of sterols. Similarly, changes caused by the topological differences between the lamellar L∝ and hexagonal H₁₁ phases are examined in a model membrane system which undergoes a L∝ to H₁₁ phase transition. A novel way of quantifying the differences in the orientational order parameters across the phase transition is used; the observed differences are consistent with the different symmetry properties of the two phases.
Perdeuteriated polycrystalline hexamethylbenzene is used to demonstrate various methods of measuring ²H NMR relaxation. In addition, some aspects of orientation dependence of the relaxation rates are examined, and found to agree with the theory. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/29432
Date January 1988
CreatorsSternin, Edward
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0022 seconds