Return to search

Mechanical Characterization of Zirconium Hydrides with High Energy X-Ray Diffraction

Zirconium and its alloys are of technical importance, finding application as a structural material in the nuclear industry. Engineering components fabricated from zirconium slowly pick-up hydrogen as a result of in-reactor corrosion, degrading the components mechanical properties as a brittle hydride phase forms. This dissertation applies high energy X-ray diffraction to directly measure the mechanical properties of zirconium hydrides in the bulk and at stress concentrations in zirconium alloys. The current study is presented as a manuscript format dissertation comprised of three manuscript chapters. Chapter 3 reports the in-situ loading of hydrided Zircaloy-2 and discusses hydride/Zircaloy-2 matrix interactions as a function of applied load. Chapter 4 reports the mechanical behavior at a fatigue pre-crack in un-hydrided Zircaloy-2, comparing the results to finite element and polycrystalline plasticity models of the crack tip. Chapter 5 reports the effect of hydrides on the notch tip strain field. The three manuscript chapters are followed by a general discussion in Chapter 6 and conclusions in Chapter 7. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2009-09-27 20:32:01.455

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5245
Date28 September 2009
CreatorsKERR, MATTHEW
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format11147171 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.002 seconds